Bag-of-Words Transfer: Non-Contextual Techniques for Multi-Task Learning Seth Ebner, Felicity Wang, Benjamin Van Durme Johns Hopkins University

Introduction Many architectures for multi-task learning (MTL) have been proposed to take advantage of transfer among tasks, often involving complex models and training procedures. We ask if the sentence-level representations learned in previous approaches provide significant benefit beyond that provided by simply improving word-based representations. To investigate the question, we consider three Bag-of-Words Techniques in multi-task learning on the tasks of sentiment analysis and textual entailment.

Unigram Generative Regularization	Pooling Encoder (DAN)	Pre-trained Word Embeddings
 Reconstruct input using a language model conditioned on the label Uses no additional data Related to corresponding discriminative classification task Realized as an auxiliary loss term 	 Deep Averaging Network (lyyer et al., 2015) Competitive performance to LSTMs and CNNs on textual similarity, textual entailment, and sentiment classification Syntactically oblivious Fast and small 	 GloVe (Pennington et al., 2014) Transfer learning: embeddings derived from 6B tokens of English from Wikipedia and Gigaword Type-level, non-contextual representations Good initialization for word embeddings
For an arbitrary encoder network $q_{\phi_t}(y \mid x)$		DAN

and decoder network $p_{\theta}(x \mid h)$, the loss function \mathcal{L}_{GMTL} on a single example *i* for dataset t is:

 $-[\alpha_t \log q_{\phi_t}(y_i^{(t)} \mid x_i^{(t)}) + \beta_t \log p_{\theta}(x_i^{(t)} \mid h_i^{(t)})]$

• $x_i^{(t)}$. $y_i^{(t)}$: input and its label

- α_t , β_t : discriminative and reconstruction task weights
- $h_i^{(t)}$: conditioning vector for controllable text deneration of the second sequence x_2 $h := [t, y', \pi_1]$
- t : one-hot encoding of the task index • $y' = \mathbf{L}_t y$: task-specific label projection transforming potentially disparate label spaces of different sizes to the same $\mathbf{L}_t \in \mathbb{R}^{l imes |\mathcal{Y}_t|}$
- : trainable task-specific ²¹rameters
- : input encoding of the first sequence x_2 , on which we condition of the reading of

Datasets Following (Augenstein et al., 2018), we experiment with 8 two-sequence-input text classification datasets.

 x_1

Dataset	Model	Epoch	# Params.	Metric
MultiNLI ^{2.5%}	ARS (r)	268 s (C)	362,608	49.20
	DAN	35 s (C)	241,408	47.69
Topic-5	ARS (r)	93 s (G)	423,918	0.914
	DAN	75 s (C)	362,718	0.900

Table 1: Comparisons of mean training epoch times and number of trainable architecture parameters(i.e., trainable non-word-embedding parameters) in the reimplemented ARS model and the DAN model in the MTL setting for the MultiNLI and Topic-5 datasets. (C) denotes time run on a CPU, (G) denotes time run on a GPU.

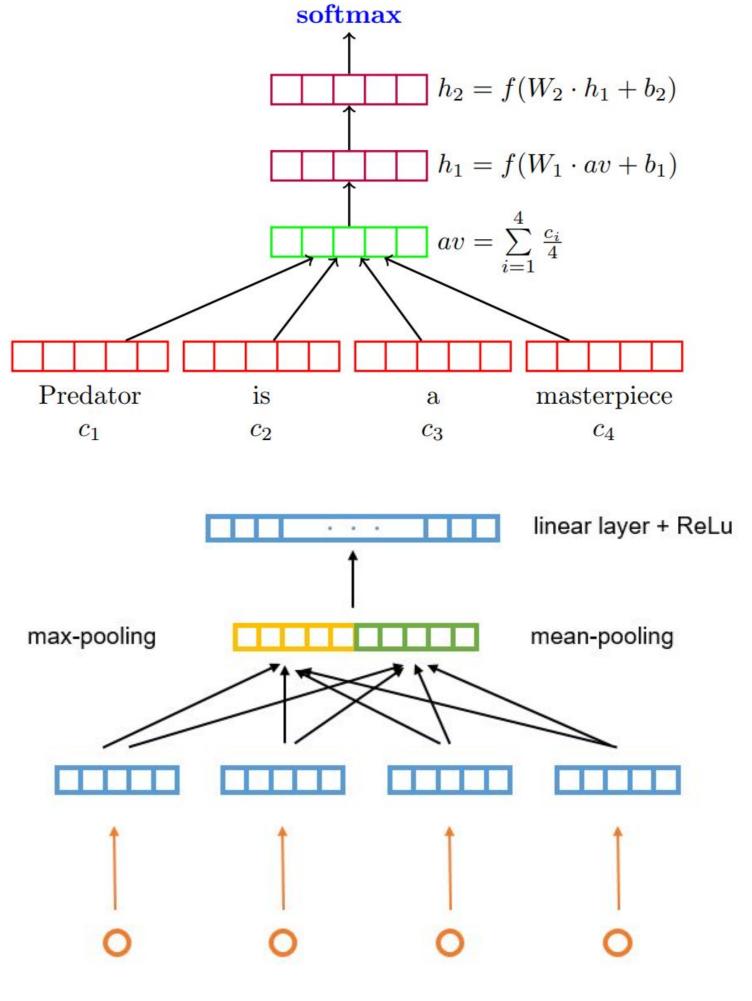


Figure 1: Original DAN model and our modification: We use the concat[mean-pooling, max-pooling] and then a linear projection and

Dataset	# Labels	# Train	Seq 1	Seq 2	Task	Auxiliary tasks
MultiNLI ^{2.5%}	3	10,001	Hypothesis	Premise	Natural language inference	Topic-5
ABSA-L	3	2,618	Aspect	Review	Aspect-based sentiment analysis, laptop domain	Topic-5
ABSA-R	3	2,256	Aspect	Review	Aspect-based sentiment analysis, restaurant domain	Topic-5, ABSA-L, Target
Target	3	5,623	Target	Text	Target-dependent sentiment analysis	FNC-1, MultiNLI ^{2.5%} , Topic-5
Stance	3	3,209	Target	Tweet	Stance detection	FNC-1, MultiNLI ^{2.5%} , Target
Topic-2	2	5,177	Topic	Tweet	Topic-based sentiment analysis, binary	FNC-1, MultiNLI ^{2.5%} , Target
Topic-5	5	7,236	Topic	Tweet	Topic-based sentiment analysis, fine-grained	FNC-1, MultiNLI ^{2.5%} , ABSA-L, Target
FNC-1	4	39,741	Headline	Document	Fake News Detection	

Table 2: Size of label set, number of training examples, content of sequences, task description and auxiliary tasks of each dataset.

Results

	MultiNLI ^{2.5%}	ABSA-L↑	ABSA-R↑	Target↑	Stance↑	Topic-2↑	Topic-5↓
Metric	Acc	Acc	Acc	F_1^M	F_1^{FA}	ρ^{PN}	MAE^{M}
ARS STL (baseline)	49.25	76.74	67.47	64.01	41.1	63.92	0.919
ARS MTL (baseline)	49.39	74.94	82.25	65.73	44.12	80.74	0.859
ARS MTL (best)	49.94*	75.66* [†]	83.71* [†]	66.42*	46.26*	80.74	0.803* [†]
ARS STL (r)	47.71	73.16	72.99	62.44	25.05	63.91	0.903
ARS MTL (r)	49.20	75.03	79.39	63.61	29.30	61.26	0.914
STL DAN (w)	38.82	74.03	80.79	63.35	34.31	64.15	0.907
GSTL DAN (w)	41.70	73.53	78.58	63.45	35.17	65.09	0.906
MTL DAN (w)	47.69	74.03	79.86	61.44	31.77	65.42	0.900
MTL DAN + GloVe (w)	43.04	68.91	81.84	63.53	30.96	67.85	0.856
GMTL DAN (w)	39.35	69.29	78.23	61.95	25.70	59.88	0.927
GMTL DAN + GloVe (w)	40.41	69.29	80.21	63.01	26.36	61.17	0.958

Conclusions

- BOW Techniques often outperform baseline, competitive with best ARS models
- DAN encoder facilitates transfer across tasks
- GloVe embeddings serve as good initialization
- DAN encoder is fast to train compared to bi-RNN
- Unigram Generative Regularization often improves STL performance but hurts MTL
 - Training with similar datasets is more helpful using UGR
 - But additional datasets are not always available

TFMTL

Try out our codebase TFMTL, a flexible, general, TensorFlow-based Multi-Task Learning full-pipeline framework for text classification tasks on Github! Simply modify configurations in a JSON file and everything else (dataset downloading, preprocessing, architectures, auxiliary tasks, hyper-parameters, etc.)

Table 3: Test results. Acc: accuracy; F_1^M : macro-averaged F_1 ; F_1^{FA} : macro-averaged F_1 of "favour" and "against" classes; ρ^{PN} : macro-averaged recall, averaged across topics; MAE^M : macro-averaged mean absolute error, averaged across topics. \uparrow/\downarrow next to each task name indicates that higher/lower score is better. "STL": single-task setting; "MTL": multi-task setting; "(r)": reimplementation of baseline bi-directional RNN model from ARS (no Label Embedding Layer or Label Transfer Network). *: model uses LEL; [†]: model uses LTN. Models using only BOW representations are marked with (w). Best results from BOW experiments (bottom section) are **bolded**.

TFMTL@GitHub

is taken care of.

