Gradual Fine-Tuning for Low-Resource Domain Adaptation

Haoran Xu, Seth Ebner, Mahsa Yarmohammadi, Aaron Steven White[†], Benjamin Van Durme, Kenton Murray Johns Hopkins University, [†]University of Rochester

Introduction

Domain adaptation: Directly learn a model for a task in a particular domain with too few instances of in-domain data

Fine-tuning:

2:

5:

- 1) Pretrain a model on a large amount of out-of-domain but task-relevant data,
- 2) Further train the pretrained model on in-domain data until convergence

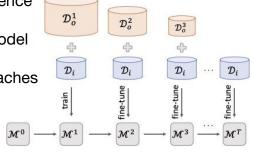
Gradual FT: Iteratively train a model to convergence on data whose distribution progressively approaches that of the in-domain data.

1: function GRADUAL-FT($\mathcal{D}_i, \mathcal{D}_o^0, \mathcal{M}^0, \mathcal{S}$)

 $\mathcal{D}_{train}^t \leftarrow \mathcal{D}_i \cup \mathcal{D}_o^{\check{t}}$

 $\mathcal{D}_{\varrho}^{t} \leftarrow \text{Sample}(\mathcal{D}_{\varrho}^{t-1}, amount)$

 $\mathcal{M}^t \leftarrow \text{TRAIN}(\mathcal{M}^{t-1}, \mathcal{D}^t_{train})$


for amount in S do

 $t \leftarrow t + 1$

end for

10: end function

return \mathcal{M}^t

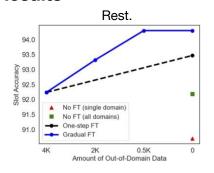
Method

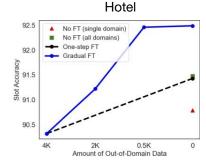
- Train a model on a sequence of datasets, each of which would be increasingly difficult to learn on its own due to its small size.
- At each stage, we increase the similarity between the current domain and the target domain, which enables the model to potentially better fit the distribution of the target domain.

Datasets Dialogue State Tracking MultiWOZ v2.0:

 $N-1 \rightarrow \{\text{Rest., Hotel}\}\$

Event Extraction


ACE 2005:


English → Arabic

	Rest.	Hotel	Attract.	Taxi	Train
‡ Slots	7	10	3	4	6
† Turns	3011	3472	577	1667	1771
Dialogues					
Train	523	513	127	326	282
Dev	50	56	11	57	30
Test	61	65	12	52	33

English	Arabic	
33	30	
22	21	
4202/4859	1743/2506	
450/605	117/174	
403/576	198/287	
	33 22 4202/4859 450/605	

Results

	TrigID	TrigC	ArgID	ArgC
No FT (Ar)	64.77	57.03	47.76	42.83
No FT (mixed)	64.12	59.48	46.57	43.21
One-stage FT	63.61	59.88	46.79	43.44
Gradual FT	66.29	62.87	48.11	44.21

Conclusions

Gradually fine-tuning in a multi-stage process can:

- yield substantial gains over one-stage FT
- be applied without modifying the model or objective

